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A connection which is both Einstein and semisymmetric is called an ES connec- 
tion, and a generalized n-dimensional Riemannian manifold on which the differ- 
ential geometric structure is imposed by a unified field tensor gzz through an ES 
connection is called an n-dimensional ES manifold and denoted by ESX,,. We 
investigate some necessary and sufficient conditions for submanifolds of ESX~ to 
be also Einstein and derive the generalized fundamental equations on various 
submanifolds of ESX,, such as generalized Gauss formulas, generalized Wein- 
garten equations, and generalized Gauss-Codazzi equations. We employ the use- 
ful and powerful concept of C-nonholonomic frame of reference, introduced in 
earlier work. 

1. I N T R O D U C T I O N  

Einstein (1950, Appendix II)  proposed a unified field theory which, 
while physically motivated, consists mainly of  a set of geometrical postulates 
for the space-time X4, the consequences of  which 'he did not pursue 
extensively. 

Characterizing Einstein's unified field theory as a set of  geometrical 
postulates in X4, Hlavat:~ (1957) provided its mathematical  foundation. 
Since then the geometrical consequences of  these postulates have been devel- 
oped by a number  of  mathematicians. 

Generalizing X4 to the n-dimensional generalized Riemannian manifold 
X, ,  the n-dimensional generalization of Einstein's unified field theory has 
been studied by Wrede (1958), Mishra (1959), Chung and Han  (1981), and 
Chung and Cheoi (1985). The latter two references particularly investigated 
the n-dimensional generalization of  Principle A using recurrence relations. 

Recently, Chung and Cho (1987) introduced the concept of  the n- 
dimensional E S  manifold (denoted by E S X , ) ,  imposing the semisymmetric 
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condition (2.9) given below, on Xn, and found the unique representation of 
Einstein's connection in a beautiful and surveyable form, (2.10). Many 
results concerning the manifold ESXn have been obtained, such as conformal 
change between ES manifolds (Chung and Cho, 1987), curvature tensors 
and unified field equations on ESXn (Chung and Lee, 1988), and generalized 
fundamental equations for the hypersubmanifolds of ESXn (Chung and Lee, 
1989). In particular, the new concept of C-nonholonomic frame of reference 
introduced by Chung et al. (1989) is a very powerful tool in the study of the 
geometry of submanifolds of ESXn. 

The purpose of the present paper is to derive generalized fundamental 
equations on the submanifolds of ESXn, employing the C-nonholonomic 
frame of reference. Briefly, the organization of the present paper is as follows. 
Section 2 introduces some preliminary concepts, results, and notations. Sec- 
tion 3 is devoted to the derivation of several useful identities which hold on 
the submanifolds of X, and ESX,. In particular, we investigate some neces- 
sary and sufficient conditions for the submanifolds to be also Einstein. In 
Section 4 we derive the generalized fundamental equations on the submani- 
folds of an ESXn--generalized Gauss formulas, generalized Weingarten 
equations, and generalized Gauss-Codazzi equations. They will be presented 
in surveyable and refined forms. In Section 5 the previous results are special- 
ized to two special submanifolds ofESX,, hypersubmanifolds and tangential 
submanifolds defined to be those to which the ES vector is tangential. We 
note that the fundamental equations of hypersubmanifolds of ESX, coincide 
with those obtained by Chung and Lee (1989). 

All considerations in the present paper deal with the general case n > 2 
and all possible classes and indices of inertia. 

2. PRELIMINARIES 

This section is a brief collection of definitions, notations, and basic 
results used in subsequent considerations. The detailed proofs are given in 
Chung and Cho (1987), Chung and Lee (1989), Chung et al. (1989), and 
Hlavat~, (1957). 

2.1. The Manifolds X. 

The usual Einstein n-dimensional unified field theory is based on a 
generalized n-dimensional Riemannian manifold Xn, a generalization of the 
space-time X4, which is referred to a real coordinate system yV and obeys 
coordinate transformations 2 yV --, fv for which Det(Of/~y) 50. 

2Throughout the paper, Greek indices are used for the holonomic components of tensors 
in Xn. They take the values 1",..., n' and follow the summation convention. 
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The algebraic structure on Xn is imposed by a general nonsymmetric 
tensor gzp, called the unified f ield tensor. It may be split into a symmetric 
part hx, and a skew-symmetric part kz~: 

gz, = hz~ + kz~ (2.1) 

where 

g = Det(gzu) # 0, b = Det(hzv) # 0 (2.2) 

We may define a unique tensor h zv by 

hzuh xv = fi ~ (2.3) 

The tensors hx. and h z~ will serve for raising and/or  lowering indices of 
holonomic components of tensors in X. in the usual manner. 

The differential geometric structure on X. is imposed by the tensor gz. 
by means of a real connection F ~ ,  which satisfies the transformation rule 

~ - v / ~  fl ~2 ~ \ 
-~ _~ vy __F~ r + ; ~ }  (2.4) 

and the system of Einstein equations 

c;~gzu - F z ~ u  - Fo~ gz~ - 0 (2.5a) 

or equivalently 

D~og~u = 2 S ~ j g  x~ (2.5b) 

Here Do, denotes the symbolic vector of the covariant derivative with respect 
to F ~  and 

S~  ~= F~3 (2.6) 

is the torsion tensor of F ~ .  
The connection F ~  will be called Einstein, since it is a solution of (2.5). 

Thus, our manifold X, is endowed with a unified tensor field gzu in the first 
and is connected by an Einstein connection F ~  in the second. 

A procedure similar to Christoffel's elimination applied to the symmet- 
ric part of (2.5b) yields that if the system (2.5) admits a solution F~,, it 
must be of the form (Hlavat~, 1957) 

v v F~, = {f.} + Sz, + U 4, (2.?) 

where {~} are the Christoffel symbols with respect to i~z~ and 

U ~z, = 2h ~"S~(zPk,)~ = 2kp(zS,~ vp (2.8) 
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2.2. The Manifolds ESX. 

A connection F ~  is said to be semisymmetric if its torsion tensor is of 
the form 

S~, v= 2 6~,zX~, t (2.9) 

for an arbitrary vector X,  # 0. A connection which is both semisymmetric 
and Einstein is called an ES connection. An n-dimensional ES manifold, 
denoted by ESX,,  is a manifold X, on which the differential geometric 
structure is imposed by gzu through the ES connection F[u. 

It has been shown that the ES connection F.[, must be of the form 
(Chung and Cho, 1987) 

FA u = {•} + 2k(x vXu) + 28~Xul (2. I0) 

It has also been shown that in an X. there always exists a uniquely deter- 
mined ES connection F~ u with a unique ES vector Xu satisfying (Chung and 
Cho, 1987) 

Here 

V,okzu + Po, EzX, l = 0 (2.11) 

p _ (2)I. /., 
A,u  - -  r ~ A k t  - -  u , : t , u  

is a symmetric tensor with 

(2)kz~ = kxak~ (2.12a) 

Det(Pxu) r 0 (2.12b) 

2.3. The C-Nonholonomic Frame of  Reference in X. at Points of  Xm 

This section deals with a brief introduction of the concept of the C- 
nonholonomic frame of reference in Xn at points of its submanifold Arm, 
m<n (Chung et al., 1989). 

Agreement 2.1. In our further considerations in the present paper, we 
use the following types of indices: 

(a) Lowercase Greek indices a, fl, 7, . . . .  running from 1" to n" and used 
for the holonomic components of tensors in An. 

(b) Capital Latin indices A, B,C, . . . .  running from 1 to n and used for 
the C-nonholonomic components of tensors in Xn at points of X~. 

(c) Lowercase Latin indices i,j, k . . . . .  with the exception of x, y, and 
z, running from 1 to m (<n). 

(d) Lowercase Latin italic indices x, y, and z, running from m + 1 to n. 
The summation convention is operative with respect to each set of the 

above indices within their range, with the exception of x, y, and z. 
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Let Xm be a submanifold of X, defined by a system of sufficiently 
differentiable equations 

yV=yV(xl . . . . .  x m) (2.13) 

where the matrix of derivatives BY= @V/Oxi is of rank m. 
At each point of X~ there exists the first set {BY, N ~} of n linearly 

independent nonnull vectors. The m vectors By are tangential to X~ and the 
n - m  vectors N ~ are normal to X,, and mutually orthogonal. That is, 

x 

h~tCB~Nn=O, h ~ N n = O  for x d:y (2.14a) 

The process of determining the set {N ~} is not unique unless m = n - 1 .  

However, we may choose their magnitudes such that 

h ~ t ~ N  ~= s~ (2.14b) 

where ex = i 1 
negative. 

Put 

according as the left-hand side of (2.14b) is positive or 

IBm ', if A = l , . . . , m  (=i) 
E,]= N v 

t x  , if A = m + l  . . . . .  n (=x) 
(2.15) 

Corresponding to the first set {E.~} of n linearly independent vectors, there 
exists a unique second set {E A } of linearly independent ,vectors at points of 
Xm such that 

A v _ _  v A a EzEA - (~;~, E~EB- 6~ (2.16) 

Putting 

( 
E.~=IB~, if A = l , . . . , m  (=i) 

(2.17) / x  
LJVx, if A = m + l , . . . , n  (=x) 

x 

We note that the vectors Bj~ and N~ are also tangential and normal, respec- 
tively, to X~ in virtue of Theorem 2.3. 

Now, we are ready to introduce the following concepts of C-nonholo- 
nomic frame of reference and induced tensors. 

E A Definition 2.2. The sets {E,]} and { ).} will be referred to as the C- 
nonholonomicframe of reference in X, at points Of Xm. This frame gives rise 
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to C-nonholonomic  components  of  tensors in X~. I f  TX::: are holonomic com- 
ponents of  a tensor in X, ,  then at points of  Xm its C-nonholonomic 
components  T~ii; are defined by 

T~:/:= a... A E~ (2.18a) T~.. .Ea �9 . . . . .  

In particular, the quantities 

Tj : : : -  a... ~ �9 B f f . . .  (2.19) - T~...Ba" �9 

are components  of  a tensor in Xm and are called the components  of  the 
induced tensor of T~::: on Xm of  Xn.  

In virtue of  (2.16), an easy inspection shows that 

T,~.. _ TA.'.~,,' �9 " E~" �9 �9 (2.18b) A ' "  - -  Z B ' " J - ~ d  " 

The following theorems and remark are consequences of  the powerful 
C-nonholonomic frame of reference. 

x 

N ~ N~, and Theorem 2.3. The tensors B~, B], ~ , 

B~ = B[By  (2.20) 

are involved in the following identities: 

x x 
i a i a x i a _ _  a _ _  

BaB~ - 6~, N a N  = (~y, B a N  - NAB,. - 0 (2.21) 
Y 

x 

B~ = BTh~ah ~ N~ = exNz (2.22a) 

x 

n v -  _ n / b Y %  N ~= v 

Va i 
h Ba=hUBf ,  a _  ; hzaBi - hijBx (2.23) 

x 

B~ = ~X-  • N~N ~ (2.24a) 
x 

x 
a _ v a _  

B z N a -  B a N  - 0 (2.24b1 

r i _ _  i V a _ _  V V a V B a B a -  Bx,  B~Bi - Bt , BaB~ = Bx (2.24c) 

Theorem 2.4. At each point of  Xm any vector X~ in X. may be expressed 
as the sum of two vectors XiB~ and ~,x X x N x ,  the former tangential to Xm 
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and the latter normal to Xm. That is, 

x 

X~ = XtB[ + ~ XxN~ 
x 

(2.25a) 

or equivalently 

X v=X~B~+~ z_V X ~ N  (2.25b) 
x 

where 

Xi -- X~B~, Xx = X ~N ~ , Xx = exX x 

(2,26) 
x 

i a i X = X  B~, X x = X ~ N ~  

Furthermore, Xi (X i) are components of a tangent vector relative to the 
transformations of X, , ,  while Xx (X  ~) is invariant relative to the trans- 
formations of Xm and Xn. 

Theorem 2.5. The C-nonholonomic components has of h~,v and h As of 
h ~V are given by the matrix equations 

'h11"  him 

(hAB)  = 
h m l  " " " h.,m 

'hi1 . . .  hi,, 

h ml . . .  h mm 
(h A~) = 

0 

em+ l 

~ m +  ! 

r 

~ 

(2.27a) 

(2.27b) 

Remark  2.6. The induced tensor gu of gzu is given by 

go=go~B~ 

where its symmetric part hij and skew-symmetric part k U are 

ho = h~,f~B'~ B if, k~ = k~l~B~ Bff 

(2.28a) 

(2.28b) 
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so that 

g,j = h~j + k~j (2.29) 

In the present paper, we restrict ourselves to submanifolds for which the 
following condition holds: 

Det(hlj) # 0 (2.30) 

In virtue of the condition (2.30), we may define a unique inverse tensor/7 ek 
of h/j by 

h~j/~'k = 6f (2.31) 

It has been shown that h ~k is the induced tensor h ~k of h zv. That is,/7 ik = hUL 
Therefore, the tensors hij and h ~ may  be used for  raising and/or  lowering 
indices o f  the induced tensors on Xm in the usual manner. 

2.4. The Induced Connection on X= of  X. 

Definition 2. 7. If  Fz~ is a connection on X,,  the connection F~ defined 
by 

k _ _  k ~, 7 a f l  F ~ -  Br(B~ j + F,~t~Bi B} ), r (?B[ O2yr (2.32) 
B ~  ~x j - Ox' Ox j 

is called the induced connection of F~u on Xm of X.. 
It should be remarked that the torsion tensor Su g of the induced 

connection F/~ is the induced tensor of the torsion tensor Szu v of the 
connection FX.. That is, 

c rO~DPO~ (2.33) Sij k : oafl L'i oi  ~r  

Furthermore, the induced connection {~} of {Zu} is the Christoffel symbol 
defined by h~. That is, 

{~} = �89 + i~jhip - t~pho. ) (2.34) 

3. ANALYSIS  O N  THE S U B M A N I F O L D S  X. A N D  ESX. 

The section is devoted to the derivation of several identities which hold 
on the submanifolds of X, and ESX,, .  In particular, we prove the generalized 
Gauss formulas and find some necessary and sufficient conditions for the 
submanifolds of X, to he Einstein. 



Generalized Equations on Submanifolds of ESX. 1363 

In our subsequent considerations, we frequently 
C-nonholonomic components: 

k ix = - k x i  " =  k~/3BC/ N ~ = g~B~ N ~ 

x 

~ _  x S o S B ~ 8 9 N ,  Su - -Ss~  = 

x 

UXij = U ~  = UT,~t~B~'B~Nr 

use the following 

(3.1a) 

(3.1b) 

(3.1c) 

x 

3.1. The Tensors f~0 and the Generalized Gauss Formulas 

0 

Let Dj be the symbolic vector of the generalized covariant derivative 
with respect to x's. That is, 

0 

a -  ~ r-~o~oP r'kB~ (3.2) OjBi - Bij + ~ f l r ~ i  ~ j  - -  ~U k 

0 

Theorem 3.1. The vector DjB'/in X ,  is normal to Xm and is given by 

0 x 

19] B~/= - Z  f~u N'~ (3.3) 
x 

where 

X 0 x 

f~a = - ( DjB'/) N,~ (3.4) 

Proof In virtue of (2.32), multiplication by B2 on both sides of (3.2) 

shows that DsB~. is normal to Xm. The relation (3.4) follows from (3.3) 
Y 

by multiplying by~ N~ on both sides of (3.3) and making use of (2.21). 

The tensor ~u will be called the generalized coefficients o f  the second 
fundamental form of  X,,.  

x x 

The tensors fL7 are the induced tensors of DfdVa on X,, Theorem 3.2. 
of X,. That is, 

x x 

n,j = (OpN~ (3.5) 

Proof Substituting (3.2) into (3.4) and making use of (2.21) and the 
relation 

x x x 

0 = ~j(B~N~) = B~N~ + (el~N~)B~B~ 

we have (3.5). 
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Let 

x x 

A u = (V~-a)B~B~ (3.6) 

be the generalized coefficients of the second fundamental form with respect 
to the Christoffel symbols {z~}. Here V~ denotes the symbolic vector of the 
covariant derivative with respect to {z~}. 

x 

Theorem 3.3, The coefficients f~u of the submanifold Xm are given by 

x x 

f ~ u = A u - S u  x -  UXu (on an X,, of X,) (3.7a) 

f~u = Ao - 2 cxXukj)x (on an Xm of ESX,)  (3.7b) 

Proof In virtue of (2.7), (3.5), (3.6), and (3.1), the relation 
(3.7a) follows: 

x x 

~u = ( D#~)BTBff 

x x 

= [ 0 # o -  + s J +  U%)N IB  9 
x 

_ _  x 
- A u -  S u - U %  

In virtue of (2.9), (2.22), and (3.1), on an Xm of ESXn we have 

Su ~ = O, U~u = 2Xuk:) ~ = 2exXuk:)x (3.8) 

since k: ~= exkj~. Now, the substitution of (3.8) into (3.7a) gives (3.7b). 
Now, we are ready to state the following generalized Gauss formulas 

for submanifolds of X,  and ESXn. They are direct consequences of (3.3) 
and (3.7). 

0 

Theorem 3.4. The tensor D:B~ satisfies the following identities: 

0 x 

D: B~/= - Z  ( h o - S u  x -  UXo) N~ (3.9) 
x 

(Generalized Gauss formulas for an Xm of X,) 

0 x 

D+B  = Z ( - h .  + exX<,Gz)N ~ (3.10) 

(Generalized Gauss formulas for an Xm of ESX,)  

x 

Remark 3.5. Note that the tensor A u defined by (3.6) is symmetric. 
Therefore, in virtue of (3.7), we see that Y~u is symmetric on an Xm of ESX, ,  
while it is not symmetric on an X~ of a general X,. 
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3.2. Analysis  on the Submanifolds of  X .  

In this section, we prove several relations which hold on the submani- 
folds Xm of X~ and present two necessary and sufficient conditions for the 
induced connection to be an E S  connection. 

Theorem 3.6. On an X,~ of Xn the induced connection F/~ of F~, is of 
the form 

k k F 0 -  {~j} +Soh+ Uku (3.11) 

where S~ k and Uk~ are respectively the induced tensors of Szu v and UVz~. 

Proof  In virtue of (2.19) and (2.32), our assertion (3.11) may be 
obtained by substituting (2.7) into (2.32). 

Although the tensor UVz~ takes the form (2.8), its induced tensor Uku 
does not take the same form in general. 

Theorem 3. 7. On an Xm of Xn, the induced tensor /.7~/j is of the form 

Uko " = 2h t'q Sq( iP kj)l , = 2k p( iSj~ ~p (3.12) 

if and only if the following condition holds' 

k x  _ x _  ~S( j  k0x-0  or ~ , k x ( i S j ) k - 0  (3.13) 
x x 

Proof  In virtue of (2.8), (2.19), (2.24a), and (3.1), we have 

v ,u k v f l R Z R , u  R k  uko - = U z~B;~B} B~ = 2k~(zS~) ui ,-,j ~ 

kp __ vr f l  ,~ ,u k 2kp(iSj) - 2k~(zSu) B~Bi B~ B ,  

= Uku+ 2 ~ S(jkXko~ 
x 

from which our assertion follows. 

Remark  3.8. The following statements are direct 
Theorem (3.7). 

(a) On a submanifold Xm of ESXn,  the tensor U'~] always takes the 
form 

ukij = 2hkqSq(iPkj)p = 2k(~kXj) (3.14) 

since the condition (3.13) holds in virtue of (3.8). 

consequences of 
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(b) A manifold Xn is called an E M  manifold if it is connected by an 
Einstein connection F~u of the form 

F~ u = {•} + 28~X,-  2gz~,X v (3.15) 

for an arbitrary vector X~. In this case, the relations (2.18a), (3.15), and 
(2.21 ) give 

x x 

Sj.k x = Sz u VB~j BUN~ = 2 ( ~5 ~zX, j - k~, X ~) B~B~ N 

= - 2kjkX ~ 

Hence, a necessary and sufficient condition for the tensor Uku to be of the 
form (3.12) is 

k x ( i S j ) k  - -  ~x X k x ( i k j  O = y  ' x_  - 2  x )~ 
x 

One such case is that the vector Xz be tangential to Xm (i.e., X x = 0). 

Theorem 3.9. On an Xm of Xn, the induced tensor of Do, g~, may be 
given by 

x 

~ co- (3.16) (Do~gxu)Bi ffi Bk - Dkg8 + 2 ~ kxt/~tjk 
x 

where Dk is the symbolic vector of the covariant derivative with respect 
to F~-. 

Proof  In virtue of (2.14a), (3.1), and (3.3), our assertion follows in the 
following way: 

0 0 A 

Dk gij = Dk gij = D~( gx~Bi B]) 

0 0 0 

= (Dkgxu)B~iB] + gxu((Dkli~)By + B~D~B~) 

x x 

= (Dtogzu)B~iB~B~ - gz~ E ( ~ N Z B ~  + ~J kN~B~) 
x x x 

x x 
__ I1 to -- ( Dtog zu) BZii B~ B~ - k ~u ~" ( - ~ i k  B~ N ~ + Ojk B~i N ~) 

x 

x 
__ A ,u to - (Dtog~u)Bi B~ Bk -- Y~ k~t j~l~  

x 

The following theorem is an immediate consequence of Theorem 3.9. 
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Theorem 3.10. On a n  Xm of X~, the induced tensor of Vo, gz ,=  Vo~kz~ is 
given by 

x 
X .u co (Vo, kzu)Be B} Bk = Vkk~ + 2 ~ k~rjAilk (3.17) 

x 

where Vk is the symbolic vector of the covariant derivative with respect 
to {~}. 

Let (z)/~ o be the induced tensor of (Z~kzu = kx~k~,. That is, 

( 2 ) / ' 7  _ ( 2 ) / .  ~ , ~ D / ~  
r~ U - -  r~ , ~  j_~ i ~ j  

Theorem 3.11. On an X,, of X, ,  the induced tensor of (2)kzu is given by 

( 2 ) ~  = (2)kij _.}_ E kiXkxj 
x 

= ( 2 ) k  O" - ~ exkixkjx ( 3 . 1 8 )  
x 

where 

(2)kiy = kPkpj 

Proof In virtue of (2.19), (2.20), (2.24a), and (3.1), the 
(3.18) follows in the following way: 

(2)ko=kPkpj=kxUk~13BZiB~(3;- Z N~V,t  
\ x x / 

= (2 G- E k,%; 
x 

relation 

In the following two theorems, we prove two necessary and sufficient 
conditions for F} to be Einstein. If the condition (3.19) [or (3.21)] is satisfied 
on an Xm of Xn, then the induced connection F} is an ES connection in virtue 
of Theorems 3.6 and 3.12 (or Theorem 3.13)�9 

Theorem 3.12. On an Xm of Xn, the induced connection F~. is Einstein 
if and only if the following condition holds: 

x x 

Z (f~ikkjx -- f~kjki~) = 0 (3.19) 
x 

Proof. In virtue of (3.2) and (3.3), we have 

Fo.Bk - ~ f~jN ~ (3.20) 
x ?r 
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Hence, if F~. is Einstein, then the relations (2.32), (2.20), (2.24a), (3.20), 
(2.1), (2.14a), (2.21), and (2.5a) give 

0 = ~kgo- P P F ikgp:- F g:gip 

\ x 
e e a f l y  

= (8rg~ , -  F~rg~13- Fr~g~)B~ B~ B~ 

-~(I"iPkaP--~y ~ikN~]k'~flBffEy / X xA~x 

( z Z N"L 
/ x x 

x x 

= E (n,~kj~- n~jk,x) 
x 

The converse statement may be proved similarly, taking the reverse 
steps of the above calculations. 

Theorem 3.13. On an Xm of X~, the induced connection F} is Einstein 
if and only if the following condition holds: 

x 

~x (kx[i~'~J]k -- SjkXkix)  = 0 ( 3 . 2 1 )  

Proof  If F} is Einstein, then the relations (2.5b), (3.16), (2.19), (2.20), 
(2.24a), and (3.1) give 

0 = D, g v "  2SkPgi: 

x 
= - 2  Z kxfjn,lk + (D~,gzu- 2S,o. gzl~B,,)B~B:i S~ 

x 

x x ~, 
= - 2  E kx{+nilk + 2 E (&o,,"B~B;N,)(gzl~B~Nx ~) 

x x 

x 
=2 x~ (kxrinjlk - Sjjkix) 

The following two theorems are direct consequences of the above two 
theorems. 
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Theorem 3.14. If  the induced connection F~ of F[ ,  on an Xm of X n is 
Einstein, then the following condition holds: 

x 

(~EJ~ + Sjj)kxi = 0 (3.22) 
x 

Proof If  F~ is Einstein, then the conditions (3.19) and (3.21) hold. Our 
assertion immediately follows by subtracting (3.19) from (3.21). 

Theorem 3.15. Let Xm be a submanifold of Xn with symmetric 
x X 

coefficients f ~  = ~ji. If  the induced connection F~ is Einstein, then the follow- 
ing condition holds: 

Z SjkXk~i = 0 (3.23) 
x 

Proof This assertion follows immediately from (3.22). 

3.3. Analysis  on the Submanifolds of  ESX. 

In this section, we investigate consequences of the results of the previous 
section. In virtue of (3.8) and Remark 3.5, we note that on an Xm of ESX, 
the following relations always hold" 

Sjx~=0 (3.24) 

x X 

f ~  = f~j~ (3.25) 

Theorem 3.16. On an Xm of ESX~, the induced connection ~ " F U is of the 
form 

F~= {~} + 2fi~Xjl + 2k(~kxj) (3.26) 

Hence, the induced connection is also semisymmetric. 

Proof This assertion follows by substituting (2.9) into (3.11). Refer 
to (3.14). 

Theorem 3.17. On an Xm of ESX~, a necessary and sufficient condition 
for the induced connection F~ to be Einstein is 

x 

k~[i~"~j]k = 0 (3.27) 
x 

Proof This assertion is an immediate consequence of (2.21) and (3.24). 

Remark 3.18. In virtue of Theorem 3.17, we note that the condition 
(3.27) is satisfied on a submanifold Xm of ESX, which is Einstein. However, 
it has not been proved that the condition (3.27) is identically satisfied on 
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e v e r y  X m  of ESXn. Although this difficulty still exists and it is an open 
problem, we  believe that the following statement is true: 

Every submanifold Xm of ESX, is Einstein, so that it is also an ES 
manifold 

It seems that this statement may be proved by a line-geometric method. 
In our further considerations, we use the symbol ESXm to denote those 

submanifolds X,, of  ESXn which satisfy the condition (3.27). 

Remark 3.19. Note that the condition (3.19) or (3.27) was already 
obtained by Chung et al. (1989, p. 864) and named the ES identity in 
Theorem 4.5, stating that on every Xm of ESX, the condition (3.27) holds 
identically. However, as we see in Remark 3.18, it is a wrong result at the 
present time. This wrong result had been obtained from the misassumption 
that on an X,~ of ESXn the induced tensor of Do~g~ is Dkgo. But this was 
found to be a wrong assumption in virtue of (3.16). As we remarked in 
Remark 3.18, there is no way to prove that the second term of the right- 
hand side of (3.16) identically vanishes on every Xm of ESXn. 

Theorem 3.20. On an ESXm of ESXn, the following relations hold: 

x 

Z k~t, f~Jlk = 0 (3.28) 
x 

x 

k x t i m j ]  k = ~ k k X k x [ i X j ]  ( 3 . 2 9 )  
x x 

Dk g~ = ( D~ogx~,) Bi B} B~ (3.30) 
It o2 x Vkku = (Vo)kzp)Bi B} B~ + 2 2 kk kx[jXi] (3.31 ) 

x 

Proof Since ESXm is Einstein, the relations (3.28) and (3.30) are 
respectively direct consequences of (3.27) and (3.16). The relation (3.31) 
follows from (3.17) and (3.29). In order to prove the relation (3.29), we first 
note that 

-kxik S + kxjki ~ = ex(-kxikjx + kxjkex) -- 0 

The relation (3.29) immediately follows by substituting (3.7b) into (3.28) 
and using the above relation. 

Theorem 3.21. On an ESXm of ESXn, the following identity, the corre- 
sponding induced equation of (2.11), holds: 

Vkko.+ 2PkteXjl = 0 (3.32) 
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where 

P i j  = ( 2 ) k / j -  h o (3.33) 

Proof Let/sij be the induced tensor of P~oz. Multiplying by z ~o Bi Bk on 
both sides of (2.12a) and making use of (.3.18) and (3.23), we have 

- -  ,~ (o x 
P k i  = P o , z B i  Bk = (a)kki-  hki  = P k i  - -  2 k k  k x i  (3.34) 

x 

12 m Hence, multiplying by B,-ZB} Bg on both sides of (2.11) and making use of 
(3.31) and (3.34), we have that equation (3.32) follows:: 

X p to 0 = (Vo, kzu)B, B} Bk + 2fikuXjl 
A p ~o x 

x 

= Vkk~ + 2Pk[iXjl 

4. THE GENERALIZED FUNDAMENTAL EQUATIONS FOR 
SUBMANIFOLDS OF ESX. 

This section is devoted to the derivation of the generalized fundamental 
equations for submanifolds of ESXn, such as the generalized Weingarten 
equations and Gauss-Codazzi equations. The generalized Gauss formulas 
were already obtained in (3.10). Formally, we state the following result. 

Theorem 4.1. (The generalized Gauss formulas for an Xm of ESX,  .) On 
an Xm of ESXn, the following relations hold'  

0 x 

DJ B~/= E ( - Au + 2 exX(i, kj)x) N. '~ (4.1) 
x 

In order to derive the generalized Weingarten equations, we need the 
following preparations. 

Let 

0 

M a= DiN a (4.2) j x  

Theorem 4.2. The vector M ~ may be decomposed as 
) x  

M ~ = M  Bi + MYN ~ (4.3) 
�9 " , j x  y 

the first vector being tangential to X,, and the second normal to X,,,. 
Furthermore. M' is also the induced tensor of DrN ~ and M y is the induced 

" j x  . j x  
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Y 

vector of (DTNa)N,~. That is, 

M i = M  a i _  ,~ i 7 ,> 3> B ~ - ( D r N  )B=B) 

Y Y 

M y = M UN,~ = ((D,N")Na)B 2 
JX JX 

(4.4a) 

(4.4b) 

Proof The first assertion (4.3) follows from Theorem 2.4. The relations 
(4.4) are obvious in virtue of (2.19). 

Theorem 4.3a. 
given by 

On a n  X m of ESX,,  the induced vector M ~ of M ~ is 
JX j x  

x 
M i im i J~ = s~h A,~j+ 2k(xXj) + 5}Xx (4.5a) 

Proof In virtue of (4.4a), (2.10), and (2.21), we have 

M ~= [0rN~+ ({~} + 26~[~Xr] + 2kJXr))N~]B't~Bf 

= (VrNx~)B~I~Bf- Xx5} + 2k(SXr)N ~B't~B f (4.6) 

Using (2.22a), (2.23), and (3.6), the first term of (4.6) may be written as 

(first term) = (VrN~)hP~B't3Bf 

x x 

= exhim(vTN~)B~Bf= im e~h A, v (4.7) 

In virtue of (2.23), the third term of (4.6) is 

(third term) = (k~PN'B})(XrBf) + (kfB't~B~)(X~N ~) 

= himkx~Xj + k/Xx (4.8) 

W e  now substitute (4.7) and (4.8) into (4.6) to obtain (4.5a).  

Theorem 4.3b. 
given by 

On a n  X m  of ESX.,  the induced vector M i of M ~ is 
j x  r  

x 
M i im i i i exh fL,j+kjxX - 6~Yx+kjXx (4.5b) 
j x  

Proof In virtue of (3.7b), the first term of (4.5a) may be written as 

x x 
irn irrl im 2h X(mkj)x g,.h Amj = e~h ~'~mj~- 

Now, the representation (4.5b) follows by substituting the above relation 
into (4.5a) and making use of the skew-symmetry of k,,x. 
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The following abbreviation will be used in our further considerations: 

Y Y 

H 7 = ey(VrNa)N~ (4.9) 

Y 

Theorem 4.4. The tensor H r satisfies the relation 

y )c 

H~,+ Hr=0 (4.10a) 

In particular, 

x 

Hr=0 (4.10b) 

Proof The relation (4.10b) is a direct consequence of (4.10a). The 
relation (4.10a) follows from (4.9) and 

o= VXho ~ =  XV,N~ 

Theorem 4.5. On a n  X m of ESX,,  the C-nonholonomic components 
M y of M a are given by 
j x  j x  

Y 
~/I  Y .,~ Y Y Y "'/x eyHrB} + 6~Xj+ 2k(/ X~) (4.11) 

Proof Making use of (2.10), (4.9), (2.21), and (2.26), we can obtain 
the expression (4.11) obtained from (4.4b) as follows: 

Y 

My= ( DTNa) Nt~B; jx 

Y Y 
= (VyNt~)NaBf + 2( 6JXrl + k(JXT))N"Nt~B r 

Y Y Y 

= eyH rBf + 6~(XrBf ) + (k~N'~Np)(XrBf) + (k~,ZBfNpl(X.N '~) 

Y 

= eyH rBf+ 6{X/+ kffXg+ kYXx 

Now, we are ready to present the following two representations of the 
generalized Weingarten equations for an X,~ of ESX,,  by simply substituting 
(4.5a), (4.5b), and (4.11) into (4.3). 
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Theorem 4.6. On a Xm of ESX, ,  we have 

0 x 
a i m  i i a DjN =(gxh Amj+ 2X(xkj) -6~X~)Bg 

y 
+ ~  (eyHrBr+ 6 ~ X j + 2 k ( f X ~ ) N  ~ (4.12a) 

(The first representation of the generalized Weingarten equations on an Xm 
of ESX,)  

0 x 

kjxX - 6'jX~ + ~ a DiN a = ( 8,xhim~-~m j + i i kj Xx)Bi 

y 
+ ~ (eyHrBf + 8YXj+ 2k(iYX~))N ~ (4.12b) 

(The second representation of the generalized Weingarten equations on an 
Xm of ESX,)  

In the derivation of the generalized Gauss-Codazzi equations, we need 
the following curvature tensors Ro,~ v of ESX~ and Ruk h Of Xm: 

Ro, u~ v= 2(~EuFl~l~o] + F2[~oFl~lul) 

Rijkh=2(~tjF~li] ,p h + r~k[iFiplj]) 

(4.13) 

(4.14) 

Theorem 4. 7. (The generalized Gauss-Codazzi equations for a n  Y m of 
ESX, . )  On an Xm of ESX, ,  the curvature tensors defined by (4.13) and 
(4.14) are involved in the following identities: 

h_  a f i r e  R ~  - Rfir~ Bi B) B~Bh~ 

x x 

+ 2 ~ fll, fi(f]:]mexh h'' - h h h 6~x+kj] X~+kjjxX ) 
x 

(4.15) 

(The generalized Gauss equations for an Xm of ESX,)  

0 x x x 
_ a e 7 /  fi 2DEkDjl~-- Rfir~ B~ B} B~Na + 6Dt~Xjl 

y x 

+ 2 ~ f~iEk(B~ CxHy r + Xjlky ~ + kj]~Xy) 
Y 

(4.16) 

(The generalized Codazzi equations for an Xm of ESX,)  
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Proof In virtue of (3.2), (3.3), (4.13), and (4.14), we have 

o o o o 

2DikD]lBTi = 2[ Otk( DjlB~) - Ftjkl(D,,B~) 

o o 

-F~tmk( DjlB~m) + F~Br( DtsB~I)Brl] 
x 

a # r e  m a  ~ a =-R~rp B~BJBk+ R~j~ Bm+4~ ~[jXklN 
x 

(4.17) 

where use of the relation S j k  m = 2~u'X~ 1 has been made in the above lengthy 
calculations. On the other hand, the relations (3.3) and (4.12a) and the 

x 

symmetry of f2u give 

0 0 0 x 

2Ot~,D]lBTe = - 2  E htk(f~]], N~) 
x 

0 x x 0 

= 2 2 (D[j~k]i) Na'b 2 ~_ f~4kDjlN u 
x ~ x 

0 X X 

= 2 Z (Duf~kli+ ~itkXjl) Na 
x 

x y 

+ 2 Z f~itk(Bfle'yH r+X]lk* y + kJlYXx) N" 
x , y  

x x 

+ 2 ~  m p f ~ i [ k ( n j ] m ~ x  h p  - -  5 ~ x  @ k j ] x  X p  -~- k]lPXz)B; (4.18) 
x 

Hence, comparing (4.17) and (4.18), we have 

a - u 0 x x 

Rkj~"B~.-R~r~.'~- BkB)B, +2 Z (Dtj f2klt + 3f~[kXj]) N ~ 
x 

x y 

+ 2 ~ 
x , y  

x x 

+ 2 ~ ~i~(~jlme~h pm- p P ~}tX~+kjlxXx+kjl X~)B~ (4.19) 
x 

Making use of (2.21), the identity (4.15) follows by multiplying both sides 
of (4.19) by Bh~ and interchanging the indices i and k. Similarly, multiplying 
N~ into both sides of (4.19) and replacing the indices x by y and z by x, we 
have (4.16). 
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Remark 4.8. Note, in particular, that on an  E S X m  of  ESXn the terms 

x h x 

2 ~ f~tikjlxX of(4.15) and 2 ~ ~i[~kj~xX h of(4.16) 
Y 

vanish in virtue of the identity (3.28). 

5. TWO SPECIAL SUBMANIFOLDS OF ESX.  

In this section, we introduce two special submanifolds of ESXn, namely, 
hypersubmanifolds and T submanifolds, and investigate their properties with 
particular emphasis on the specialization of the results obtained in the previ- 
ous section. 

5.1. Hypersubmanifolds of  ESX. 

When the dimension Of Xr~ is m = n -- 1 (namely, for the case ofhypersub- 
manifolds), the theory of submanifolds assumes a particularly simple and 
geometrically illuminating form. This simplification is mainly due to the fact 
that under this circumstances there exists a unique normal N ~ at each point 
of X , - l .  

In this case, quantities used in the previous sections take the following 
simpler forms and values: 

ex = 1 (5.1a) 
y n 

N a = N  ~ de=r N ~, N = N  ~ do=r N~ (5.1b) 
x n 

x n x 1l 

f2~= f ~  dZ--r I)U, A~=Au dZ-r A 0. (5.1c) 

X x = X x = X , N  ~ d~d r (5.1d) 

kix  = ki x = kin d~__f ki (5. le) 

k~y=k~ y =kn,=0 (5.1f) 
y n 

HT=Hr=0  (5.1g) 

It may be easily checked that 

i i kx = - k  (5.2) 

Theorem 5.1. (The generalized fundamental equations for an X, - l  of 
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ESX, .) On an X , -  1 of ESX,. the following identities hold" 

0 
DjB~/= - f ~ U "  = (-Aij + 2X(ikj))N '~ (5.3) 

(Generalized Gauss formulas) 
0 
DIN~ ( h 'A, . j -  Xjk ' -  + Ok/ )BT + ( Okj + Xj )N 

= (ffm~,~j+X~kj- r ~)kj)B'~+ (4)k++Xj)N a (5.4) 

(Generalized Weingarten equations) 

_ a fl y e hm R i j k  h - -  Rt3~,, Bi BJ BkBh~ + 2['~k[i(~'~jlmh - -  (95;]  "}- ~ k j ]  h q- k j l X  h) (5 .5 )  

(Generalized Gauss equations) 

0 
_ a f l T " e  2D[k~jli- R#re B, BiBkNa + 6~i[kXj] + 2(~'~i[kkjl 

Proof 
from (4.1), (4.12), (4.15), and (4.16), respectively. 

(5.6) 

(Generalized Codazzi equations) 

In virtue of (5.1) and (5.2), the relations in this theorem follow 

Remark 5.2. Note, in particular, that the Gauss-Codazzi equations on 
an ES submanifold of  ESX, are the relations (5.5) and (5.6) with the vanish- 
ing last terms in each equation, since in this case the identity (3.28) is reduced 
to 

k [ i ~ i ] k  = 0 (5.7) 

Remark 5.3. In virtue of (2.18b), (2.15), (2.17), and (2.21), it may be 
shown that the following relations hold on an Xm of ESX,: 

= kxiS: + kxYU ~ (5.8a) 

k~'~Bf = k/B~ + E k.YN ~ (5.8b) y J y 

Using the relations (5.8) together with (5.1) and (5.2), it may be easily 
checked that the generalized fundamental equations presented in Theorem 
5.1 coincide with those obtained in Chung and Lee (1989). 

5.2. T-Submanifolds of ESX. 

A submanifold Xm of ESX. whose ES vector X~ is tangential to X., at 
each point of Xm will be called a tangential submanifold of ESX. and will be 
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denoted by TXm. The simplification of TXm is due to the fact that it satisfies 

X~ =XiBiz, Xx = 0 (5.9a) 

V i V x X ~  X = X  Bi, 0 (5.9b) 

In fact, an Xm of  ESX~ is a TXm if  and only i f  any one of  the relations in (5.9) 
holds. 

The following theorem gives an alternative characterization of TXm. 

Theorem 5.4. A necessary and sufficient condition for the ES vector Xx 
to be tangential to Xm of ESX~ at each point of  Xm is that the basic tensor 
ga, satisfies the following condition: 

(V,ok~) _N~N ~ = 0 for all x, y (5.10a) 
-K y 

or equivalently 

x y 

(V~,k~)NaNa=O for all x , y  (5 10b) 

Proof Suppose that the vector Xx is tangential to Xm. The condition 
(5.10a) immediately follows by multiplying by NZN ~ on both sides of  (2.11 ). 

x y 

Conversely, suppose that the condition (5.10a) holds for gz~. In order 
to prove that the vector Xz is tangential to Xm, it suffices to show that 
Xx = 0. Let 

Txo,=N~ 

We first note that the ( n - m )  x n matrix (N a) and n x n matrix (P~)  are 

respectively of rank n -  m and n. Now, multiply by N~N ~ on both sides of 
x y 

(2.11) to obtain 

Txo, Xy = Ty~Xx for all x, y 

which is an identity for x=y .  If  we assume that X~#0 for all x, we must 
have 

Xv 
Tyro =~"  Tx,o for all x r  

Xx 

This implies that the rank of the matrix (Tx~o) is less than n - m ,  which is a 
contradiction to our previous discussion. Therefore, we have 

Xx=X~N~=0 for all x 

The equivalence of (5.10a) and (5.10b) is obvious. 
Now, in virtue of (5.1) and (5.9), the following theorem follows from 

(4.1), (4.12), (4.15), and (4.16). 
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Theorem 5.5. (The generalized fundamental equations for tangential 
submanifolds of ESX,.) On each of the following tangential submanifolds 
of ESX,, we have 

o (-Aij+ 2exX(ikj)x)N ~ on all TXm 
DjSf = (5.11 ) 

[ (-Ao.+2X(Ikj))N ~ on all 7"X.-i 

(The generalized Gauss formulas) 

(E (~y(~ ~B~ + xA~ y + XJS~)N ~ 
| ~ Y  . x . 

x Y 
0 

DiN ~= (5.12a) +(~h'~A,~+X~k/)S~ on all rx~ 
((himAmj-Xjk')B~ + XjN ~ on all TX,_I 

(The first representation of generalized Weingarten equations) 

(2 ( ey(q rBf + Xjkx y + XjfiY)N ~ 

| ~ Y  . x i ct 

x Y 
0 

DjNxa=) -k-(sxhZm~imj+X kjx)Bi a on all TXm (5.12b) 

~(hi"fL,j+ X'kj)Bg + XjN on all TX,_~ 

(The second representation of generalized WeingarlLen equations) 
h _  a l 3 7  e Ruk - -  R~7~ B~ B) B ~  

x x 

2 E ~V(~J~me~ h~m + kJ~ x~) (on TXm) 
x 

x x 

+~ f2  ~ ,ff.xhhm~"~k[i~'~j] m (on TESXm) (5.13) 
x 

2f~kt~(f2jlmh ''m + k j ~  h) (on TX, _ ~) 
2hhm~k[i~'~j]m (on TESX,,_~) 

(The generalized Gauss equations) 
0 x X 

_ a t 3 ? ' e  2Dt~j]i-  Rpr~ B~B}BiNa 

+ 
x x y 

6f2it~Xjl + 2 ~ f~4k(BflexH r+Xjlky x) (on all TXm) 
Y 

6ff2itkXjl (on all TX,_ t) 
(5.14) 

(The generalized Codazzi equations) 
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